Preliminary communication

Palladium-catalyzed cycloaddition of carbon dioxide with methoxyallene

Tetsuo Tsuda, Takashi Yamamoto and Takeo Saegusa

Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Kyoto 606-01 (Japan)

(Received December 13, 1991)

Abstract

A palladium catalyst generated from $Pd_2(dba)_3 \cdot CHCl_3$ and nBu_2PCH_2CH_2Py (Py = 2-pyridyl) has effected novel cycloaddition of methoxyallene with CO₂ to afford (E)-5-methoxy-2-(methoxy-methylene)-4-methylene-5-pentanolide regio- and stereospecifically, where a methoxy functional group plays an important role.

Transition metal-catalyzed CO_2 fixation into unsaturated hydrocarbons [1] is an attractive approach to chemical utilization of CO_2 , which is of great concern at the present time in relation to carbon resources and environment problems. As to transition metal-catalyzed CO_2 fixation into allene, a few works using Pd [2], Rh [3], and Ni [4] complexes have been reported. Yields of CO_2 fixation products, however, were not more than 20%.

The palladium-catalyzed reaction of allene with CO_2 [2] has not been efficient and selective; an acyclic ester (1) has been obtained in 16% yield along with formation of its regioisomer, 4,6-dimethyl-2-pyrone, and allene oligomers. Here we report the unprecedented palladium-catalyzed cycloadddition of methoxyallene (2) with CO_2 , which affords (*E*)-5-methoxy-2-(methoxymethylene)-4-methylene-5-pentanolide (3) (eq. 1). This reaction is characterized by a decisive role of a methoxy functional group.

$$2 \text{ MeO} -== + CO_2 \xrightarrow{\text{Pd catalyst}} MeO \xrightarrow{\text{OMe}} O$$
(1)
(2)
(3)

Correspondence to: Professor T. Tsuda, Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Kyoto 606-01, Japan.

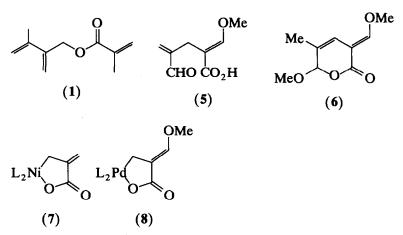

Pd compound	Ligand (L)	L/Pd	Temp. (°C)	3 ^b , Yield (%)	6 ^b , Yield (%)
Pd(acac) ₂	PCy ₃	3	100	28	trace
	- 5	4		33	trace
		5		25	trace
		4 ^d		25	11
		2 ^e		0	28
	4	1		45	0
		2		39	trace
		3		trace	trace
		1	120	55[33] ^c	trace
	ⁿ Bu ₂ PCH ₂ Py		100	41	0
	P ⁿ Bu ₃ -Pyridine (1:1)		120	23	trace
Pd(OAc) ₂	PCy ₃	4	100	26	0
Pd ₂ (dba) ₃ ·CHCl ₃	PCy ₃			24	0
	4	1	120	64[41] ^c	0

Table 1 Palladium-catalyzed cycloaddition of CO_2 with methoxyallene (2) ^a

^a The reaction was carried out under nitrogen in a 50 mL autoclave. 2 (0.50 mmol); Pd/2 = 0.05; CO_2 (initial pressure at room temperature 50 kg cm⁻²); solvent MeCN (10 mL); 20 h. ^b Yield determined by GC using an internal standard. Products 3, 6 showed spectroscopic data and elemental composition in accord with the proposed structures. ^c The value in square brackets is the isolated yield (%) determined by PLC. ^d Pd/2 = 0.10. ^e Pd/2 = 0.10, MeCN (5 mL).

When 2 [5] was treated with CO₂ under pressure in MeCN at 120°C, in the presence of a palladium catalyst (5 mol%) generated from $Pd_2(dba)_3 \cdot CHCl_3$ (dba = dibenzylideneacetone) and one equivalent of 1-(2-pyridyl)-2-(di-n-butyl-phosphino)ethane (ⁿBu₂PCH₂CH₂Py) (4) [6], the lactone 3 was produced in 64% yield regio- and stereospecifically (Table 1). Effectiveness of the ligand 4 in the palladium-catalyzed reaction is noteworthy. Acyclic co-oligomers were not detected. An acetal moiety of 3 was readily converted into an aldehyde group by hydrolysis; ¹H NMR spectroscopy revealed that treatment of 3 in MeCN-d₃ at room temperature with a small amount of 5% HCl aqueous solution gave 5 quantitatively.

Effect of the ligand on the formation of 3 was examined using $Pd(acac)_2$. Tricyclohexylphosphine (PCy₃) was less efficient than 4. Other tertiary phosphine ligands such as P^iPr_3 , P^nBu_3 , $P(C_8H_{17}-n)_3$, $Cy_2P(CH_2)_4PCy_2$, and $Ph_2P(CH_2)_n$ PPh₂ (n = 2,3) produced 3 in ca. 10-20% yields. Increase of the palladium catalyst concentration and decrease of the ligand/Pd ratio effected formation of 6, which suggests that 6 may be formed from 3 via isomerization catalysed by a palladiumhydride species. Under the reaction condition of Pd(acac)₂ (20 mol%)-2 PCy₃/MeCN (5 mL)/100°C/20 h with CO₂ (60 kg/cm²) and without CO₂, 3 was actually isomerized to 6, in 90 and 86% yields, respectively. Use of MeCN as a solvent is necessary for the reaction; the reactions using PCy₃ in DMF and THF produced small and trace amounts of 3 and 6, respectively.

1,2-Pentadiene did not produce a co-oligomer with CO_2 in the presence of the $Pd_2(dba)_3 \cdot CHCl_3-4$ catalyst. This finding indicates that the methoxy-substituent plays a crucial role in the present reaction. With regard to the formation of a nickel metallacycle (7) [7] from allene, CO_2 , and a Ni⁰ complex *, one possible explanation for the effect of the methoxy group can be that the electron-donating methoxy group promotes formation of a palladium matallacycle intermediate (8) by its conjugation with an electron-withdrawing carbonyl group.

References

- 1 (a) D. Walther, Coord. Chem. Rev., 79 (1987) 135; (b) A. Behr, Angew. Chem., Int. Ed. Engl., 27 (1988) 661; (c) P. Braunstein, D. Matt and D. Novel, Chem. Rev., 88 (1988) 747.
- 2 A. Dohring and P.W. Jolly, Tetrahedron Lett., 21 (1980) 3021.
- 3 M. Aresta and E. Quaranta, C₁ Mol. Chem., 1 (1985) 283.
- 4 Y. Sasaki, J. Mol. Catal., 54 (1989) L9.
- 5 M. Ghalamkar-Moazzam and T.L. Jacobs, J. Polym. Sci., Polym. Chem. Ed., 16 (1978) 615.
- 6 T. Tsuda, S. Morikawa and T. Saegusa, J. Chem. Soc., Chem. Commun., (1989) 9.
- 7 H. Hoberg and B.W. Oster, J. Organomet. Chem., 266 (1984) 321.

^{*} Nickel(0)-catalyzed cycloaddition reaction of CO₂ with allene has been reported to form 3-methyl-4methylene-2-pentene-5-olide in 20% yield [4], which shows a different regiochemistry from the present reaction.